Learning Bayesian Networks from Correlated Data
نویسندگان
چکیده
منابع مشابه
Learning Bayesian Networks from Correlated Data
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between obs...
متن کاملLearning Discrete Bayesian Networks from Continuous Data
Real data often contains a mixture of discrete and continuous variables, but many Bayesian network structure learning and inference algorithms assume all random variables are discrete. Continuous variables are often discretized, but the choice of discretization policy has significant impact on the accuracy, speed, and interpretability of the resulting models. This paper introduces a principled ...
متن کاملLearning Bayesian Networks from Incomplete Data
Much of the current research in learning Bayesian Networks fails to eeectively deal with missing data. Most of the methods assume that the data is complete, or make the data complete using fairly ad-hoc methods; other methods do deal with missing data but learn only the conditional probabilities, assuming that the structure is known. We present a principled approach to learn both the Bayesian n...
متن کاملLearning Causal Bayesian networks from Literature Data
We propose two machine learning methods based on Bayesian networks to discover automatically real world causal relations from scientific publications. The first method assumes that the occurrence of causal mechanisms (and the corresponding entities) in the publications follows a transitive scheme, the second method assumes that the causal mechanisms occur independently. We perform an evaluation...
متن کاملLearning Bayesian networks from data. Some applications in biomedicine
We will start the talk introducing Bayesian networks [15, 21] as one probabilistic graphical model that is based on the conditional independence concept between triplet of variables. This concept constitutes the semantic for Bayesian networks and is checked in the structure (a directed acyclic graph) by means of the u–separation criterion. The quantitative component of the paradigm (parameters)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep25156